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Abstract—This paper discusses the phenomenon associated with the forced synchronization
(“entrainment of a self-sustained oscillator by an external force”) in a relay system with hys-
teresis, which manifests itself in the occurrence of periodic motions close to the rhythmic activity
of neurons, when packets of fast oscillations are interspersed with intervals of the slow dynamics.

To study this phenomenon, we introduce a circle mapping, which, depending on the param-
eters, can be a circle diffeomorphism or discontinuous map (“gap map”). In both cases, this
mapping demonstrates the so-called period-adding bifurcation structure.

It is demonstrated that packets number of fast oscillations in the period of periodic motion
is determined by the rotation number, and the length of the intervals between the packets may
be found of the boundaries of the absorbing interval. The change in the number of pulses in
the packet occurs through the border-collision bifurcation.
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1. INTRODUCTION

Let us consider the relay system with hysteresis [1–3] and external periodic action. The behavior
of this system is described by a differential equation

ẋ = f(t, x), f(t, x) = λ (x− S(x, η) + σ(t)) , σ(t + π) = −σ(t). (1)

Here t is the time variable, x is an unknown function of t and f is a given function of t and x
(t, x, f ∈ R). ẋ is the derivative of x with respect to t and S is the output (switching function)
signal of the relay element. The absolute value of λ is proportional to the time constant of the
plant, and σ(t) = µ0 + µm cos t is the forced signal, were µ0, µm are the constant component and
the amplitude of the variable component σ(t), respectively.

The output signal S of the relay element is defined as

S(x, η) =

{

1, x < q − χ, q − χ < x < q + χ, η = 1;

0, x > q + χ, q − χ < x < q + χ, η = 0.

Here q is the setting signal; χ is the hysteresis of a relay element; η = 0,+1 are the values of
the function S after the previous switching of the relay element.

As can be seen from equation (1), the right part depends on both t and x. The function f
periodically changes by t with a period of 2π. In addition, the function x(t) satisfying (1) is
invariant with respect to the shift of the origin of t by 2π [4].
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Parameters: λ = −7.5/π, q = 4.0/Γ; µ0 = 1.5/Γ; µm = 0.525/Γ; χ = χ0/Γ. In the following bifur-
cation analysis, we shall consider Γ and χ0 as control parameters: 6.0 6 Γ 6 7.0, 0.35 6 χ0 6 0.65.

Differential equations of the form (1) are used to study many problems of engineering, mechanics,
physics [5–7], and biology.

Examples in biology include the analysis of one particular type of cardiac arrhythmia, atri-
oventricular conduction block [8–10], investigations of biological mechanisms for sleep-wake regu-
lation [11–14], the study rhythmic activity of neurons [15–21].

In [22] it was shown that with accepted idealizations, a mathematical model of a vibration ma-
chine with unbalanced excitation of vibrations and relay control can be reduced to the equation (1).

The considered class of relay systems refers to systems with two time scales (for example
see [23, 24]), the dynamics of which are determined by two frequencies: high frequency oscilla-
tions generated by fast switchings of the relay element modulated by the low-frequency reference
signal.

Such systems demonstrate a phenomenon close to the rhythmic activity of neurons, when packets
of fast oscillations are interspersed with intervals of the slow dynamics. A typical example of a
model mapping describing this behavior of neurons is the discontinuous map of Rulkov [17] (see
also the review [19]). The bifurcation mechanisms of the occurrence of such oscillations have been
studied by many authors (for example see [18–21, 25]).

In this paper, we study the entrainment of a self oscillations of the relay system with hysteresis
by an external periodic signal, which manifests itself in the occurrence of regular motions close to
the rhythmic dynamics of neurons.

First, we reduce the differential equation (1) to circle mapping. It is shown that, depending on
the parameters, such a mapping is a circle diffeomorphism or discontinuous (“gap map”).

Next we obtain analytically the equation for the boundaries of the gap and boundaries of the
absorbing interval in the phase space.

This allow us to obtain the boundary separating the domains of existence of a circle diffeomor-
phism and discontinuous map (“gap map”) in the parameter plane.

We found, that in both regions, the mapping demonstrates the so-called period-adding bifurca-
tion structure [26, 27]. In [22], it was shown both numerically and experimentally that the intervals
of low-frequency oscillations, are interrupted by bursts of fast oscillations.

In the present study is demonstrated that packets number of fast oscillations in the period of
periodic motion is determined by the rotation number, and the length of the intervals between the
packets may be found of the boundaries of the absorbing interval.

The change in the number of pulses in the packet occurs through the border-collision bifurcation
when one of the points of the periodic orbit collides with the switching manifold. This corresponds
to a collision solution of the equation (1) for S = 1 with the upper switching threshold of the relay
element. Such a bifurcation in nonsmooth differential equations is called “grazing bifurcation”
[28–31].

2. MATHEMATICAL MODEL IN DISCRETE TIME

2.1. Return Map

Due to the periodicity of f by t with a period of 2π, the phase plane (1) is a rectangle with
a width of 2π with identified points N ′, N (Fig. 1a). The equation (1) reduces to a system of
autonomous differential equations

θ̇ = 1, ẋ = f(θ, x), (2)
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Fig. 1. (a) Periodic solution of a non-autonomous equation (1). (b) Magnified part of the periodic solution
in (a), illustrating the technique of obtaining a mapping (3). (c) The mapping defined on the circle. (d) The
periodic orbit of the mapping (3) corresponding to the periodic solution of the equation (1).

the phase variables of which are θ = t− 2π⌊t/(2π)⌋ and x. Here ⌊·⌋ is the largest integer number
not greater than argument (i.e., the integer part, or floor, of argument).

The solution to equation (2)) starting at the point of the lower boundary q−χ of the hysteresis
zone maps to the point located on the upper boundary q+χ then, after switching the relay element
S = 1 → S = 0, this point maps back to the lower boundary one (see Fig. 1b).

Let’s connect the ends of the segment [0; 2π] and form a circle of unit radius [1] (Fig. 1c). Then
one can introduce a function F , which maps each point Pk on the unit circle into a point Pk+1, to
which it will map Pk when rotated by an angle θk+1 according to the differential equations (2) after
a time z+k + z−k , where z±k is the pulse width at S = 1 and S = 0, respectively (Figs. 1b and 1c).

Then the change of the angle between consecutive points is Pk = P (1, θk), k = 0, 1, 2, . . . on the
unit circle is described by

θ 7→ F (θ) mod 2π, F (θ) = θ + z+(θ) + z−(θ), 0,0 6 θ 6 2π. (3)

Here z+ is the smallest non-negative solution of the equation

q + χ = eλz
+

(q − χ− 1 + µ0) + 1 − µ0 + Am

(

sin(θ + z+) − λ cos(θ + z+)
)

−Am eλz
+

(sin θ − λ cos θ) ,
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and z−:

q − χ = eλz
−

(q + χ + µ0) − µ0 + Am

(

sin(θ′ + z−) − λ cos(θ′ + z−)
)

−Am eλz
− (

sin θ′ − λ cos θ′
)

, Am =
λµm

1 + λ2
, θ′ = θ + z+.

Hence the orbit of the point θ0

θ1 = F (θ0), θ2 = F (θ1) = F 2(θ0), . . . , θk = F k(θ0), . . . .

The nature of the dynamics on a circle is determined by the rotation number

r = lim
k→∞

F k(θ) − θ

2πk
.

If the rotation number is rational r = n
m

, were n, m (m 6= 0) are integers, then there exists θ0 such
that

Fm(θ0) = θ0 mod 2π

and the orbit on the circle is m-periodic.

If r is an irrational number, then, in the case of diffeomorphism, the dynamics is quasiperiodic:
each iteration of the mapping gives a new point on the unit circle and none of these points repeats.
Then Pk forms a dense set on the circle.

This was related to the properties of diffeomorphisms. If the mapping is noninvertible or discon-
tinuous, then the specified properties are preserved, but there are differences. A detailed discussion
of these differences can be found in [26].

To describe the orbit of the system (3) starting at the point θ0, one can use two characters L
and R (“left,” “right”) [26]. Then the orbit O(θ0) = {θi = F i(θ0), i = 0, 1, 2, . . .} is described by
the sequence:

σ̄0σ̄1σ̄2 · · · , (4)

where the symbol σ̄i, i = 0, 1, 2, . . . in this sequence for each i > 0 is defined as

σ̄i =

{

L, θi < c0;

R, θi > c0.

For one-dimensional maps with a single point of discontinuity, the rotation number r of the
periodic orbit of the period m

Om(θ) = {θ ∈ I : θ, F k(θ), k = 1, . . . , m− 1},

Fm(θ) = θ, F k(θ) 6= θ

is defined as [26]

r =
NR(Om)

NL(Om) + NR(Om)
,

where NL(Om), NR(Om) is a number of symbols L and R in equation (4).
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2.2. Properties of the Mapping

• Let’s rewrite the map (3) as

θk+1 = F (θk),

F (θ) =

{

FL(θ), θ < c0;

FR(θ), θ > c0.

The functions FL, FR are continuous and strictly increase on the segments [FR(c0); c0] and
[c0;FL(c0)], respectively. The F mapping has no fixed points in (FR(c0);FL(c0)).

• If

FR ◦ FL(c0) < FL ◦ FR(c0),

then each point θ ∈ J has either a single preimage, or has no preimages inside J .

If there is a non-empty subinterval (FR ◦ FL(c0);FL ◦ FR(c0)) consisting of points that have
no preimages in J , then in this case it is said that F is discontinuous (“gap map”).

• Figure 2a shows the case when the F function is continuous and monotonically increasing.
Then F contains one fictitious point of discontinuity such that

FR(c0) = FL(c0)

and F (θ + 2π) = F (θ) + 2π.

• Figure 2b shows the case when F contains a single point of discontinuity. How the gap occurs
is explained below. Moreover, the points cL = FR(c0) and cR = FL(c0), called critical points of
rank one, define the boundaries of the invariant absorbing interval J = [cL; cR]. The function F
may have local extremes, but they are outside of J . Therefore, inside J , the function F is
piecewise increasing.

Moreover, in this case FL(c0) < FR(c0), so that in the absorbing interval J the mapping F is
discontinuous (“gap map”)(see Fig. 2c).

• The condition when the mapping F becomes discontinuous is formulated by the following
Statement 1.

Statement 1. A discontinuity F occurs when the solution x(t) of the equation (1) for S = 1,
starts at the point of the lower threshold q − χ switching of the relay element, tangents the

upper threshold of switching q + χ. In this case, the function F has a point of discontinuity

c0, which satisfies the equation

F (c0) = c∗, (5)

where F (y) = y + z+(y) [22, 27].

It is easy to see that the function Q on the right side of the equation (5) is given implicitly. Our
goal is to obtain the equation with respect to the point of discontinuity c0 explicitly.

The condition of tangency x(t) to the upper switching threshold of the relay element is written
as

ϕt + ϕx ẋ(t)|t=c∗
= 0, ϕ = q + χ− x. (6)

Since ϕt = 0 and ϕx = −1, then (6) is equivalent to

ẋ(t)|t=c∗
= 0, ẋ = λ(x− 1 + µ0 + µm cos t).
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Fig. 2. (a) Circle diffeomorphism. (b) Discontinuous map (“gap map“). (c) Determination of the discontinuity
point F and boundaries of the absorbing interval J .

Hence

x(c∗) − 1 + µ0 + µm cos c∗ = 0.

Taking into account that x(c∗) = q + χ, we get

q + χ− 1 + µ0 + µm cos c∗ = 0.

By solving this equation with respect to c∗, we have

c∗ = 2π − arccos

(

1 − q − χ− µ0

µm

)

,

if −1 6
1−q−χ−µ0

µm

6 +1.

From the condition −1 6
1−q−χ−µ0

µm

6 +1, we find the boundary L separating the regions of
existence of a discontinuous map and a circle diffeomorphism in the parameter space. Let’s denote
these domains as Πspan and Πcircle. The boundary between Πgap and Πcircle on the parameter plane
(χ0,Γ) is

L = {(χ0,Γ) : Γ = 6.025 + χ0}. (7)
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After c∗ is found, we determine the point of discontinuity c0. To obtain the equation with respect
to c0 explicitly, we use the tangency condition

x(c∗) − 1 + µ0 + µm cos c∗ = 0. (8)

Since

x(c∗) = eλ(c∗−c0)(q − χ− 1 + µ0) + 1 − µ0 (9)

+ Am t(sin c∗ − λ cos c∗) −Am eλ(c∗−c0) (sin c0 − λ cos c0),

then, substituting (9) into (8), we get:

eλ(c∗−c0)(q − χ− 1 + µ0) + Am(sin c∗ − λ cos c∗)

−Ameλ(c∗−c0)(sin c0 − λ cos c0) + µm cos c∗ = 0.

This equation is solved numerically.

3. BIFURCATION ANALYSIS

Figure 3a presents the two-dimensional bifurcation diagram in the (χ0,Γ) parameter plane.
Boundary L (7) separates the domains Πcircle and Πgap.

Below the boundary of L (within the domain of Πcircle), the mapping (2) is a circle diffeomor-
phism, and the region Πgap corresponds to the region of existence of a discontinuous mapping (“gap
map”).

Figure 3b shows a bifurcation diagram obtained for the scan A in Fig. 3a: 0.4 6 χ0 6 0.61,
Γ = 6.6 and Fig. 3c is a magnification of that part of this diagram, illustrating the transition to
and from the synchronization 1 : 5 through the saddle-node bifurcation in Πcircle. Here dotted lines
correspond to the unstable 5-cycle and solid lines to the stable one. At the boundaries of the
resonant tongue with 1 : 5 stable and saddle 5-cycles merge and disappear.

Resonance domains have a classical structure, the so-called Arnold tongues. Between each two
quasiperiodic regimes with different rotation numbers there exists a region of resonance dynamics.

Figure 3d presents a magnified part of the diagram in Fig. 3b illustrating the transition when we
cross the boundary between the regions Πcircle and Πgap. As you can see from this diagram, entering
synchronization mode with 2 : 9 occurs in Πcircle, and the transition from the synchronization mode
2 : 9 occurs in the domain Πgap.

Studies have shown that transitions at the left boundary of the tongue with 2 : 9 occur through
the classical saddle-node bifurcation. In [22] it was shown that in the domains Πgap such transitions
are associated with border-collision fold bifurcation.

Figure 3e illustrates the so-called “Devil’s staircase: the dependence of the rotation number r
on χ0. In this figure, the plateaux correspond to the resonance tongues with 1 : 6, 1 : 5, 2 : 9 1 : 4. In
Fig. 3f displays the bifurcation diagram for Πgap, which demonstrates a sequence of period-adding
bifurcations.

Finally, Fig. 4a shows periodic motion demonstrating the bursting dynamics in the Πgap tongue
with 1 : 6. As you can see from this figure, the number of packets with fast oscillations is determined
by the numerator of the rotation number. The interval between the packets is determined by the
boundaries of the absorbing interval. The change in the number of pulses in the packets occurs
through the border-collision bifurcations, when one of the periodic points collides with the boundary
of the gap F .

Periodic solution in the domain Πcircle is depicted in Fig. 4b, where this attractor is localized
in the zone hysteresis of the relay element. The question is how to determine the characteristics of
such behavior for Πcircle, remains open.
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Fig. 3. (a) Bifurcation structure of the parameter plane (χ0,Γ) of the map (3). The boundary L (7) separates
the domains Πcircle and Πgap in the parameter plane (χ0,Γ). (b) Bifurcation diagram for the scan A in (a)
(0.4 6 χ0 6 0.61, Γ = 6.6). (c) Magnified part of the bifurcation diagram in (b) near the tongue with 1:5 for
Πcircle: (0.512 6 χ0 6 0.56, Γ = 6.6). Here the dotted lines correspond to the unstable 5-cycle and solid lines
to the stable one. (d) Magnified part of the bifurcation diagram in (b) for the neighborhood of the resonance
2:9, part of which is located in the region Πcircle, and part—in Πgap. (scan A): 0.57 6 χ0 6 0.585 Γ = 6.6.
(e) Devils staircase: dependence of the rotation number r on the parameter χ0, 0.45 6 χ0 6 0.61, Γ = 6.6.
(f) Diagram for Πgap, illustrating a sequence of the period adding bifurcations: 0.35 6 χ0 6 0.65, Γ = 6.25,
(scan B).
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Fig. 4. (a) Periodic solution for Πgap. (b) Periodic solution for Πcircle.

4. CONCLUSIONS

The paper was devoted to the discussion of an unusual phenomenon in a relay system with
hysteresis and external periodic excitation. This phenomenon is associated with forced synchro-
nization of relay systems and manifests itself in the occurrence of periodic dynamics close to the
rhythmic activity of neurons, when packets of fast oscillations are interspersed with intervals of the
slow dynamics.

To study this phenomenon, a circle mapping was introduced. Depending on the parameters, the
mapping can be a circle diffeomorphizable or discontinuous map (“gap map”). It was shown that
in both cases the mapping demonstrates the so-called period-adding bifurcation structure.

We found that in the Πgap region, the number of packets with fast oscillations is determine in
the period of periodic motion is determined by its rotation number, and the length of the intervals
between packets is determined by the boundaries of the absorbing interval. The change in the
number of pulses in a packet occurs through border-collision bifurcations, which in nonsmooth
differential equations is called grazing bifurcations.

Due to the fact that the function F is piecewise monotonically increasing with one point of
discontinuity c0 in J (see Figs. 2a and 2b, the proof is given in [22]), Arnold tongues with rotation
numbers 1 :m, m = 2, 3, . . . (m is the cycle period) do not intersect on the parameter plane [7].

The regions of periodicity corresponding to stable m cycles of higher levels of complexity located
between these tongues also do not overlap. The map (3) demonstrates the typical period adding
phenomenon, and there can be no bistable behavior in one-dimensional maps of the class under
consideration [7, 26, 32–34].

However, it is well known that if, for example, the function F increases to the left of the point of
discontinuity, and decreases to the right one, then the bistability is possible [26]. In overlapped maps
(“overlapping maps” [26]) the dynamics may be more complicated associated with multistability,
as in multidimensional systems (see, for example, [35–38] and the the list of references there).
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4. Hale, J.K. and Koçak, H., Dynamics and Bifurcations , New York, Berlin, Heidelberg: Springer-Verlag,
1996.

5. Utkin, V.I., Sliding Modes in Control Optimization, Berlin, Germany: Springer-Verlag, 1992.

6. Filippov, A.F., Differential Equations with Discontinuous Right-hand Sides , Dortrecht, The Netherlands:
Kluwer Academic Publishers, 1988.

7. Arnold, V.I., Small Denominators. I. Mappings of the Circumference onto Itself, Am. Math. Soc. Transl.

Ser. II , 1965, vol. 46, pp. 213–284.

8. Arnold, V.I., Cardiac Arrhythmias and Circle Mappings, Chaos , 1991, vol. 1, no. 1, pp. 20–24.

9. Glass, L., Cardiac Arrhythmias and Circle Maps-A Classical Problem, Chaos , 1991, vol. 1, no. 1,
pp. 13–19.

10. Keener, J.P., On Cardiac Arrythmias: AV Conduction Block, J. Math. Biol., 1981, vol. 12, pp. 215–225.
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